Skip to main content

Miss Leavitt's Variables

Today, it seems, is Ada Lovelace day, an international day of blogging about the achievements of women in science. Although she is not my subject, I ought to say a little bit about Ada, since the day is (somewhat inaccurately) named for her. She was born Ada Byron, daughter of the romantic poet and was a long term friend of, and enthusiast for the work of, Charles Babbage, the computing pioneer. Although there was some talk about a match between Ada and Babbage, she was married off to William King who became Earl of Lovelace in 1838, so strictly Ada is Ada King, not Ada Lovelace - in full she was Augusta Ada King, Countess of Lovelace.

Ada is often described as the first programmer. This is a slight exaggeration, in part because the 'computer' she 'programmed' never existed. What she in fact did was translate a paper on Babbage's work by Luigi Federico Menabrea from the French, and added a series of notes of her own - notes so detailed they ended up longer than the paper they accompanied. In her notes she showed a deep understanding of the importance of Babbage's conceptual Analytical Engine and the means by which it could be used. She wanted to do more, offering to help Babbage with his work, but he turned her down.

However it isn't Ada I wanted to mention today but Henrietta Swan Leavitt, a major player in astronomy at the end of the nineteenth century. Born in Lancaster, Massachusetts in 1868, like a number of other women, she was first involved in science as a computer. This was not a device back then, as we now take 'computer' to mean, but a person who made measurements and calculations from photographic plates.

Despite ill health, she rose to become the head of stellar photometry at the prestigious Harvard College Observatory. Here she did not limit herself to simply recording observations but painstakingly built up a theory that would be central to our understanding of the size of the universe. Her subject was Cepheid variables.

These are variable stars which, as the name suggests, fluctuate in brightness, pulsing in a regular fashion from darker to lighter in a period that can last anything from hours to a year or more. Cepheid variables are named after the constellation Cepheus. Anglo-Dutch amateur astronomer John Goodricke discovered the first true variable star, Delta Cephei (hence the name Cepheid) in 1784, just two years before his death. He had already observed another star with varying intensity, Algol (Beta Persei), but this, as he suggested, varies because it is a pair of stars orbiting each other, one dark, not due to direct variation of the star itself. From observation of a good number of Cepheid variables that we can get a parallax distance on, it seems very likely that the speed of flashing of these variable stars is directly linked to their brightness.

Henrietta Leavitt was directly responsible for the theory that linked the speed of variation of the Cepheids with their brightness. This meant they could be used as 'standard candles'. If you saw a Cepheid variable, its flashing rate would tell you how bright it actually was - compare this with the apparent brightness and you could estimate just how far away the star was. Miss Leavitt's stars were a yardstick for measuring the universe. The work was completed shortly before Henrietta Leavitt's death at the age of 53 in 1921.

You can find out a little more about Henrietta Leavitt (biographical details are sketchy) and a lot more about her work in the book Miss Leavitt's Stars by George Johnson.

And you can see what's happening with the Ada Lovelace Day posts here.

Comments

Popular posts from this blog

Why I hate opera

If I'm honest, the title of this post is an exaggeration to make a point. I don't really hate opera. There are a couple of operas - notably Monteverdi's Incoranazione di Poppea and Purcell's Dido & Aeneas - that I quite like. But what I do find truly sickening is the reverence with which opera is treated, as if it were some particularly great art form. Nowhere was this more obvious than in ITV's recent gut-wrenchingly awful series Pop Star to Opera Star , where the likes of Alan Tichmarsh treated the real opera singers as if they were fragile pieces on Antiques Roadshow, and the music as if it were a gift of the gods. In my opinion - and I know not everyone agrees - opera is: Mediocre music Melodramatic plots Amateurishly hammy acting A forced and unpleasant singing style Ridiculously over-supported by public funds I won't even bother to go into any detail on the plots and the acting - this is just self-evident. But the other aspects need some ex

Is 5x3 the same as 3x5?

The Internet has gone mildly bonkers over a child in America who was marked down in a test because when asked to work out 5x3 by repeated addition he/she used 5+5+5 instead of 3+3+3+3+3. Those who support the teacher say that 5x3 means 'five lots of 3' where the complainants say that 'times' is commutative (reversible) so the distinction is meaningless as 5x3 and 3x5 are indistinguishable. It's certainly true that not all mathematical operations are commutative. I think we are all comfortable that 5-3 is not the same as 3-5.  However. This not true of multiplication (of numbers). And so if there is to be any distinction, it has to be in the use of English to interpret the 'x' sign. Unfortunately, even here there is no logical way of coming up with a definitive answer. I suspect most primary school teachers would expands 'times' as 'lots of' as mentioned above. So we get 5 x 3 as '5 lots of 3'. Unfortunately that only wor

Which idiot came up with percentage-based gradient signs

Rant warning: the contents of this post could sound like something produced by UKIP. I wish to make it clear that I do not in any way support or endorse that political party. In fact it gives me the creeps. Once upon a time, the signs for a steep hill on British roads displayed the gradient in a simple, easy-to-understand form. If the hill went up, say, one yard for every three yards forward it said '1 in 3'. Then some bureaucrat came along and decided that it would be a good idea to state the slope as a percentage. So now the sign for (say) a 1 in 10 slope says 10% (I think). That 'I think' is because the percentage-based slope is so unnatural. There are two ways we conventionally measure slopes. Either on X/Y coordiates (as in 1 in 4) or using degrees - say at a 15° angle. We don't measure them in percentages. It's easy to visualize a 1 in 3 slope, or a 30 degree angle. Much less obvious what a 33.333 recurring percent slope is. And what's a 100% slope